ATP prevents Woronin bodies from sealing septal pores in unwounded cells of the fungus Zymoseptoria tritici
نویسندگان
چکیده
Septa of filamentous ascomycetes are perforated by septal pores that allow communication between individual hyphal compartments. Upon injury, septal pores are plugged rapidly by Woronin bodies (WBs), thereby preventing extensive cytoplasmic bleeding. The mechanism by which WBs translocate into the pore is not known, but it has been suggested that wound-induced cytoplasmic bleeding "flushes" WBs into the septal opening. Alternatively, contraction of septum-associated tethering proteins may pull WBs into the septal pore. Here, we investigate WB dynamics in the wheat pathogen Zymoseptoria tritici. Ultrastructural studies showed that 3.4 ± 0.2 WBs reside on each side of a septum and that single WBs of 128.5 ± 3.6 nm in diameter seal the septal pore (41 ± 1.5 nm). Live cell imaging of green fluorescent ZtHex1, a major protein in WBs, and the integral plasma membrane protein ZtSso1 confirms WB translocation into the septal pore. This was associated with the occasional formation of a plasma membrane "balloon," extruding into the dead cell, suggesting that the plasma membrane rapidly seals the wounded septal pore wound. Minor amounts of fluorescent ZtHex1-enhanced green fluorescent protein (eGFP) appeared associated with the "ballooning" plasma membrane, indicating that cytoplasmic ZtHex1-eGFP is recruited to the extending plasma membrane. Surprisingly, in ~15% of all cases, WBs moved from the ruptured cell into the septal pore. This translocation against the cytoplasmic flow suggests that an active mechanism drives WB plugging. Indeed, treatment of unwounded and intact cells with the respiration inhibitor carbonyl cyanide m-chlorophenyl hydrazone induced WB translocation into the pores. Moreover, carbonyl cyanide m-chlorophenyl hydrazone treatment recruited cytoplasmic ZtHex1-eGFP to the lateral plasma membrane of the cells. Thus, keeping the WBs out of the septal pores, in Z. tritici, is an ATP-dependent process.
منابع مشابه
Lah is a transmembrane protein and requires Spa10 for stable positioning of Woronin bodies at the septal pore of Aspergillus fumigatus
Woronin bodies are specialized, fungal-specific organelles that enable an immediate closure of septal pores after injury to protect hyphae from excessive cytoplasmic bleeding. In most Ascomycetes, Woronin bodies are tethered at the septal pore by so-called Lah proteins. Using the pathogenic mold Aspergillus fumigatus as a model organism, we show that the C-terminal 288 amino acids of Lah (LahC2...
متن کاملCytoplasmic Streaming in Neurospora: Disperse the Plug To Increase the Flow?
Filamentous fungi grow as extending and branching tubular cells (hyphae) that generate radially symmetric colonies. As colonies expand, hyphal tips at the periphery avoid each other to allow maximum coverage of the medium, while hyphal tips at the colony center actively fuse to generate an interconnected network of hyphae that allows the bulk movement of cytoplasm toward the colony edge [1]. Hy...
متن کاملPhosphorylation of the Aspergillus oryzae Woronin body protein, AoHex1, by protein kinase C: evidence for its role in the multimerization and proper localization of the Woronin body protein.
Woronin body, a specialized peroxisome, is a unique organelle involved in septal pore sealing and protecting filamentous fungus from excessive cytoplasmic bleeding. We recently characterized the Aohex1 gene encoding the major protein of the Woronin body in the fungus Aspergillus oryzae. Although three-dimensional microscopy revealed plugging of the septal pore by Woronin body, the mechanism of ...
متن کاملThe peroxin PEX14 of Neurospora crassa is essential for the biogenesis of both glyoxysomes and Woronin bodies.
In the filamentous fungus Neurospora crassa, glyoxysomes and Woronin bodies coexist in the same cell. Because several glyoxysomal matrix proteins and also HEX1, the dominant protein of Woronin bodies, possess typical peroxisomal targeting signals, the question arises as to how protein targeting to these distinct yet related types of microbodies is achieved. Here we analyzed the function of the ...
متن کاملCharacterization of an antimicrobial and phytotoxic ribonuclease secreted by the fungal wheat pathogen Zymoseptoria tritici
The fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB) disease of wheat leaves. Zymoseptoria tritici secretes many functionally uncharacterized effector proteins during infection. Here, we characterized a secreted ribonuclease (Zt6) with an unusual biphasic expression pattern. Transient expression systems were used to characterize Zt6, and mutants thereof, in both ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2017